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Noise in homodyne and heterodyne detection
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Quantum-mechanical calculations of the mean-square fluctuation spectra in optical homodyning and heterodyning
are made for arbitrary input and local-oscillator quantum states. In addition to the unavoidable quantum fluctua-
tions, it is shown that excess noise from the local oscillator always affects homodyning and, when it is broadband,
also heterodyning. Both the quantum and the excess noise of the local oscillator can be eliminated by coherent
subtraction of the two outputs of a 50-50 beam splitter. This result also demonstrates the fact that the basic quan-
tum noise in homodyning and heterodyning is signal quantum fluctuation, not local-oscillator shot noise.

Quantum noise in optical heterodyning and homodyn-
ing is usually analyzed under the assumption that the
photodetector output is conditionally Poisson!-* (con-
ditioned on the input signal). This quantum noise is
frequently supposed to arise from local-oscillator (LO)
shot noise. However, in a fully quantum-mechanical
analysis, Yuen and Shapiro®7 have shown that it ac-
tually arises.from the signal quantum fluctuation; in
particular, homodyning and heterodyning are realiza-
tions of abstract quantum measurements of the field
quadratures. This fact permits the use of homodyne
detection for probing the small single-quadrature
fluctuation in two-photon coherent states®® (TCS’s),
also called squeezed states.’® Indeed, one would not be
able to observe small TCS field fluctuation by homo-
dyning if homodyne noise were LO shot noise. In this
Letter we analyze by a self-contained calculation the
effect of LO noise, both quantum and excess noise, on
homodyne and heterodyne detection. For conventional
input light, i.e., fields in coherent states or their random
superpositions, we demonstrate how a conditionally
Poisson calculation would yield the correct answer but
incorrect interpretation for the detection quantum
noise.

The effect of LO excess noise has not been analyzed
before. It may limit the performance of a homodyne
receiver and, when it is broadband, also that of a het-
erodyne receiver. Such excess noise is important in
connection with a TCS in which a reduced quadrature
fluctuation is involved and also with semiconductor-
laser LO’s currently being investigated for communi-
cation applications.l! We show that, by coherently
combining the two beam-splitter outputs, one can
eliminate all the LO noise even when the random effects
of photodetector quantum efficiency are taken into
account.

We first consider homodyning in the configuration
of Fig. 1 without photodetector 2 and with bias sub-
traction before filtering. Let a, b, and ¢ be the pho-
ton-annihilation operators corresponding to the signal,
the LO, and the photodetector 1 input fields, respec-
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tively. By shifting the ¢ field with a constant phase, we
have the representation

¢ =+ea+i\/1—eb. (1)

Leta = a1 + iag, b = by + ibs, etc. be the quadratures
of a, b, ete; a1, ag, ete. are Hermitian operators with
commutators [a1, @a] = i/2, [a1, b1] = [a1, b2] =0, ete.
The photon-number operators a*a, b*b, etc. are de-
noted by N,, N, etc. To bring out the essence of the
calculation we first ignore the effects of quantum effi-
ciency, detector noise, spectral behavior, and normali-
zation with respect to photocurrent.

We use ( ) to denote an average with respect to a
quantum state, which may be pure or mixed including
excess fluctuation. The mean photodetector output
can then be written as

(N.) = e(Ng) + (1 —e){Vp)
— 2[e(1 — €)]*%{a1bg ~ b1az). (2)

For homodyne detection of {a1), welet {(b;) = 0sothat
{a1) is obtained as the mean of A:

= —{2[e(1 — 9]VX(ba)}™1
X [N; = (1 = e)(Np) — e(Na)]. (3
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Fig. 1. Schematic for homodyne and heterodyne detection:
the beam splitter is assumed lossless with power transmission
€ and reflection 1 — e.
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To obtain {(A) = 1/¢{a;), we need the fact that the
signal and the LO are independent, viz., {a;b2) =
{a1)(ba), etc. The mean-square fluctuation {AA2) =
({A — (A))?) can be directly computed from Egs. (1)-
(3). The most important step in the computation is

(Nc2) = 62<Na2) + (1 - 5)2(Nb2>
+ 2e(1 — €){N,) (Np)
+ 4e(1 — €)[(b22)(a1?) + (b12)(a)?)
— (b1bg) {agai) — (bebi){aias}]
— 2ele(1 — €)]V2(ba)({Naa1) + (a1N,))
—2(1 = &)[e(1 — )]Y*[(a1) ({Npba + baNp))
— (a2} ({Npb1) — (b1Np))]. (4)

Most of the noise contribution from Eq. (4) can be
suppressed with large (Ny). To locate the essential
noise terms, we let (N, ) — o, with (N, )/(bg)2— 1.
This means that the LO power comes primarily from its
mean quadrature {bs) and is large compared with the
other moments and cross moments of @ and b up to the
fourth order. After straightforward algebra, we ob-
tain

(AA?) = e(a ) + (1 — e)(AN2)/4{Np). (5)

The signal quadrature fluctuation (Aa;2) depends on
the quantum state of the input light. Since (AN,2) =
{Ny) is characteristic of photon-number fluctuation,12
the second term above does not vanish as (N,) gets
large. However, e can in principle be made arbitrarily
close to 1; thus homodyning sees the signal quadrature
fluctuation, as first proved in Refs. 5-7.

To examine the LO-noise contribution more closely,
let us assume that in addition to its large mean field (bs)
the LO has an additive Gaussian excess noise so that
{(Np) = (b2)}2+ N. In this case,

(AN?) = (Np2) — (Np)2 = (bg)X(1 +2N) + N.
(6)

The easiest way to obtain Eq. (6) is to compute the
moments of &' = b + n, where the b field is in a coherent
state with parameter i (o) and n is an ordinary complex
Gaussian random variable with variance N. For N/
(b9)2~0, Eq. (5) becomes

(AA?) = e(Aas2) + (1 = e)(Y4 + N/2). (N

As would be expected intuitively, the signal noise enters
(AA?) through the beam-splitter transmissivity e and
the LO noise through the reflectivity 1 — ¢. The LO
shot noise or quantum noise of 1/4 and excess noise N/2
are thus not suppressed by LO power, just as the signal
noise cannot be so suppressed. Since ¢ can never be
exactly unity, the detection scheme is not quantum
limited whenever the LO-noise term of Eq. (7) is larger
than e{Aa,2). This situation may occur when we wish
to observe a small (Aa,2) in a TCS and also when (1 —
€)N is large, as in semiconductor-laser LO’s.11

To account for the effect of quantum efficiency <
1, the representation ¢’ = 4/2¢ + (1 — 7)¥2¢” for a
vacuum c” field should be used>-7 in lieu of ¢. The
spectrum (AA%w)) of A(t) can be obtained through the
correlation function (A(¢)A(0)), which in turn can be
computed similarly to the calculation of Eq. (5). Let
I(t) = eGn{Nc(t))/hwo be the mean photocurrent,

where wy is the nominal frequency of the fields and G
is the nonrandom photodetector gain. The detector
thermal noise 2kT/R and dark current eGIp can be
added in the standard fashion.34 Let Prg = Awe(N} )
be the LO power incident upon the beam splitter. We
look at the normalized photocurrent I (¢t) = I(t)
hwp/eGn2[(1 — €)Prol/? whose mean is I,(t) =
Ve{as(t)) + bias. Its spectrum is obtained by a scaling
of (AA%(w)),
AL2(w) = e{Aa:*w))
- — 2
+ 1—7 4 1 — ¢ (AN 2%(w))hwp
41’] 4 PLO
€ (AN, %(w))hwy

* 4(1 - 6) PLO
2kT/R +-eGlp _ ®
4n(1 — €)PLo(eG)?/hwo

The first term gives the signal-quadrature fluctuation
spectrum including both quantum and classical noises.
The second term represents the vacuum noise contri-
bution5-7 for nonunity quantum efficiency. The LO
noise enters the third term through the LO photon-
number fluctuation spectrum, which includes LO shot
noise. The suppressed-signal photon fluctuation
spectrum is also displayed in the fourth term. It is seen
that the power suppressing (AN,2) is Prg, whereas
(AN, ?) and the detector noise are suppressed by (1 —
€)Pro. Thus the requirement of device-noise sup-
pression may limit the value of ¢ away from unity, in
conflict with the goal of LO-noise suppression.

For coherent conventional input lights in the absence
of LO excess noise, we have the Poisson result J2 =T ~
n/hwo(l — €}Pro in the quantum limit. After normal-
ization to I, this gives I,2 = 1/4y, in agreement with the
above quantum result with (Aa;2). Since conditionally
Poisson calculations are quantum mechanically valid
when both the signal and the LO fields are conventional
lights, this agreement is expected. Indeed, the full
spectrum [Eq. (8)] also agrees with a conditionally
Poisson result if the LO is also a conventional source.
However, as is evident from Eq. (5) or (8), the condi-
tionally Poisson result does not yield the correct answer
when the signal exhibits nonconventional behavior like
TCS’s with {Aq2) < 1/4. This can be traced to the fact
that the photocount statistics in such a case is, quantum
mechanically, not conditionally Poisson.8 Thus Eq. (5)
or (8) must be employed in place of the conditionally
Poisson result. Even for conventional light, the inter-
pretation of detection quantum noise as LO shot noise,
which seems natural from the 72 = T calculation above,
is nevertheless incorrect quantum mechanically. From
Eq. (5) it can be seen that the LO shot noise provides
only a small contribution to the detection quantum
noise, vanishing in the limit ¢ — 1. The dominant
quantum noise comes from the signal, in fact from the
term 4e(1 — €) (bs2) {a12) in Eq. (4), which is a cross term
between the signal and the LO.

Heterodyning can be treated similarly. In this case
the image band plays an important role,” so that instead
of Eq. (1) we have

¢ =+/a exp[—j{wo + wrp)t] + a’
X exp[~jlwo — wrp)t]} + i /1 — eb exp(—jwet). (9)



In Eq. (9) we display the dominant oscillations of the
fields explicitly, with the image-band field a’ at fre-
quency wp — wrr when the signal is at frequency wp +
wrr. The photocurrent quadratures yield the signal
quadratures, of which we look at only one for simplicity.
First ignoring other effects, we let

1
[(1 — e)Pro/hux)

1/2
_ (ehwo) (a1bs — bias + a’1bs — bia’s). (10)

A= ch(t) coswyptdt

Pio

With (a’1) = (b1) = 0, we have (A1) = v/e(a1). In
contrast to homodyning, the N, and N, terms do not
appear in A; since they have been filtered away; thus
the photon fluctuations do not contribute to (AA2).
Indeed, in the large Py limit we have instead of Eq.

(5)
(AA%) = e[(Aas?) + (Aa"D)], (11)

which contains no contribution from the LO noise at alL
For the ¢’ field in vacuum state, as it should ideally be
for heterodyning, {(AA,2) = ¢[{Aa;2) + 1/4], which gives
the correct (AA12) = ¢/2 for coherent-state input light.
In general, the signal and image-band quadrature
fluctuations provide the fundamental noise limit in
heterodyne detection.

To include other effects, we assume as usual that the
signal bandwidth is much smaller than wzr. Let I3(2)
= I’ (tYhwo/eGn[(1 — €)PLo) Y2, where I' (t) is the filtered
photocurrent. Then I;(t) = v/¢{a,(t)) and

1-9
27

AL 2(w) = €[(Aa12(w)) + (Aa’'2(w))] + €

1 — e (AN 2%(w + wir) ) hivg
+
2 Pio
(AN X w + wir) Y hwo
(1-ePLo
QkT/R + eGID .
27(1 — e)PLoleG)%/huwg

The photon fluctuation, namely, the third and fourth
terms of Eq. (12), contributes to Al1%(w) only when its
bandwidth is greater than wyr. This situation occurs
in semiconductor lasers.! In particular, the sponta-
neous-emission contribution to photon-number fluc-
tuation in lasers is always broadband.

As the absence of LO noise in Eq. (11) can be traced
to the absence of Ny in Eq. (10), it appears that the
1.0-noise term in Egs. (5), (8), and (12) can be elimi-
nated by coherently subtracting the current outputs of
photodetectors 1 and 2 of Fig. 1. For this purpose we
use € = 1/2 and the same quantum efficiency for both
photodetectors. If d is the input field to photodetector
2, we have in homodyning with arbitrary %

+ €2

(12)

d =a/\/2 —ib/\/2, (13)
c" = 'nlfzc + (1 —_ 7’])1/26”,
d’ =n'2d + (1 - n)1/2d”, (14)

where a constant phase shift has been added to d and
the ¢”, and d” fields are in the vacuum state. Now (A’)

= (aq) for
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A= (Ner = Na)/2n

/
ﬁ&)l 2 (15)
th

With large Pyo, the mean-square fluctuation he-
comes

(AAYw)) = (Aai*(w)) + (1—n)/4n.  (16)

For conventional light, this result can also be derived
using a Poisson model. Note that, in addition to elim-
inating the LO noise, we have also recovered all the
signal energy. In heterodyning, the same procedure
eliminates the N,;, N photon fluctuation terms of Eq.
(12). This result is not affected by a more-careful
analysis of the randomness effects associated with
photodetector quantum efficiency. Equation (186)
demonstrates clearly that it is the signal fluctuation that
fundamentally limits a homodyne receiver.

This LO-noise-cancellation scheme may also find
significant applications in coherent optical fiber sys-
tems. Infact, it is the optical analog of the microwave
balanced-mixer radiometer.’3 However, there are
certain differences between the microwave and the
optical cases. In particular, the photodetector output
is a random point process even for a fixed coherent
input. Nevertheless, the above analysis shows that this
scheme works even if the system is in an arbitrary
quantum state.
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